说明:(既然有了概率论,那么也顺便把数分III梳理一下~)考虑了一下,还是以题目汇编的形式进行总结复习,通过解题梳理知识点。(题目来源:课后习题、答案书题目、期中考试题目)
~~另注:由于期末考试重点考后三章(二十二十二章),所以前四章题目会相对缩减。~
sry,时间不够了,后面几章的题目量可能还会少些……

  1. 多元函数极限与连续:

  2. 请写出下面这个平面点集的聚点和界点:

    {(x,y)y=sin1x,x>0}\{(x,y)\mid y=\sin\frac{1}{x},x>0\}

    聚点和界点均为(x,y)y=sin1x,x>0(x,y)\mid y=\sin\frac{1}{x},x>0(x,y)x=0,1y1(x,y)\mid x=0,-1\leq y\leq 1
    后面这个容易漏

  3. 确定下列多元函数极限是否存在,若存在求出相应的极限值:

    (1)lim(x,y)(0,0)sinxyx2+y2(2)lim(x,y)(0,0)(x2+y2)x2y2\begin{aligned} &(1)\hspace{1em}\lim_{(x,y)\to(0,0)}\frac{\sin xy}{\sqrt{x^2+y^2}}\\ &(2)\hspace{1em}\lim_{(x,y)\to(0,0)}(x^2+y^2)^{x^2y^2} \end{aligned}

    (1)(1):因为

    sinxyx2+y2xyx2+y212x2+y2x2+y2=12x2+y20((x,y)(0,0)) \begin{aligned} \left|\frac{\sin xy}{\sqrt{x^2+y^2}}\right|&\leq\left|\frac{xy}{\sqrt{x^2+y^2}}\right|\\ &\leq\frac{1}{2}\left|\frac{x^2+y^2}{\sqrt{x^2+y^2}}\right|=\frac{1}{2}\sqrt{x^2+y^2}\to 0\hspace{1em}((x,y)\to (0,0)) \end{aligned}

    所以lim(x,y)(0,0)sinxyx2+y2\lim_{(x,y)\to(0,0)}\frac{\sin xy}{\sqrt{x^2+y^2}}存在且为00
    (2)(2):设S=(x2+y2)x2y2S=(x^2+y^2)^{x^2y^2},则lnS=x2y2ln(x2+y2)\ln S=x^2y^2\ln(x^2+y^2)。又因为

    0x2y2ln(x2+y2)(x2+y2)22ln(x2+y2)=ρ=x2+y2ρ4lnρ0(ρ0) \begin{aligned} 0\leq |x^2y^2\ln(x^2+y^2)|&\leq\frac{(x^2+y^2)^2}{2}|\ln(x^2+y^2)|\\ &\xlongequal{\rho=\sqrt{x^2+y^2}}\rho^4|\ln\rho|\to 0(\rho\to 0) \end{aligned}

    所以lim(x,y)(0,0)lnS\lim_{(x,y)\to(0,0)}\ln S,存在且为00lim(x,y)(0,0)(x2+y2)x2y2=1\lim_{(x,y)\to(0,0)}(x^2+y^2)^{x^2y^2}=1.

  4. 判断下列函数在(0,0)(0,0)处的连续性、任意方向导数以及全微分的存在性,若存在则求解其相应的任意方向导数值以及全微分:

    f(x,y)={4xy3x2+y4,(x,y)(0,0)0,(x,y)=(0,0)f(x,y)=\left\{\begin{aligned} &\frac{4xy^3}{x^2+y^4},&(x,y)\neq (0,0)\\ &0,&(x,y)=(0,0) \end{aligned} \right.

    连续性:因为

    lim(x,y)(0,0)4xy3x2+y44xy32xy2=2y0=f(0,0) \lim_{(x,y)\to(0,0)}\frac{|4xy^3|}{x^2+y^4}\leq\frac{4|xy^3|}{2|xy^2|}=2|y|\to 0=f(0,0)

    所以f(x,y)f(x,y)(0,0)(0,0)处连续;
    任意方向导数:
    设单位方向向量为(cosθ,sinθ)(\cos\theta,\sin\theta),则

    Duf(x,y)=limt0f(tcosθ,tsinθ)f(0,0)t=limt04tcosθsin3θcos2θ+t2sin4θ=0 \begin{aligned} D_u f(x,y)&=\lim_{t\to 0}\frac{f(t\cos\theta,t\sin\theta)-f(0,0)}{t}\\ &=\lim_{t\to 0}{\frac{4t\cos\theta\sin^3\theta}{\cos^2\theta+t^2\sin^4\theta}}=0 \end{aligned}

    即任意方向方向导数为00
    全微分存在性:
    由于任意方向导数均为00,故fx(0,0)=fy(0,0)=0f_x(0,0)=f_y(0,0)=0,若全微分存在(即ff(0,0)(0,0)可微),则
    f(Δx,Δy)=fx(0,0)Δx+fy(0,0)Δy+o((Δx)2+(Δy)2)=o((Δx)2+(Δy)2)f(\Delta x,\Delta y)=f_x(0,0)\Delta x+f_y(0,0)\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2})=o(\sqrt{(\Delta x)^2+(\Delta y)^2})

    lim(Δx,Δy)(0,0)f(Δx,Δy)(Δx)2+(Δy)2=lim(Δx,Δy)(0,0)4Δx(Δy)3((Δx)2+(Δy)4)(Δx)2+(Δy)2 \begin{aligned} &\lim_{(\Delta x,\Delta y)\to(0,0)}\frac{f(\Delta x,\Delta y)}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\\ &=\lim_{(\Delta x,\Delta y)\to(0,0)}\frac{4\Delta x(\Delta y)^3}{((\Delta x)^2+(\Delta y)^4)\sqrt{(\Delta x)^2+(\Delta y)^2}} \end{aligned}

    Δx=(Δy)2\Delta x=(\Delta y)^2,则

    lim(Δx,Δy)(0,0)4Δx(Δy)3((Δx)2+(Δy)4)(Δx)2+(Δy)2=lim(Δx,Δy)(0,0)2(Δy)2+1=20 \begin{aligned} &\lim_{(\Delta x,\Delta y)\to(0,0)}\frac{4\Delta x(\Delta y)^3}{((\Delta x)^2+(\Delta y)^4)\sqrt{(\Delta x)^2+(\Delta y)^2}}\\ &=\lim_{(\Delta x,\Delta y)\to(0,0)}\frac{2}{\sqrt{(\Delta y)^2+1}}=2\neq 0 \end{aligned}

    f(x,y)f(x,y)(0,0)(0,0)处不可微,全微分不存在。

  5. 多元函数微分学:

  6. 求函数u=xyzu=xyz在沿点A(5,1,2)A(5,1,2)到点B(9,4,14)B(9,4,14)的方向AB\overrightarrow{AB}上的方向导数. 9813\frac{98}{13}

    易知uuAA点偏导数存在,又AB=(4,3,12)\overrightarrow{AB}=(4,3,12),对应单位方向向量为(413,313,1213)(\frac{4}{13},\frac{3}{13},\frac{12}{13})fx=yz,fy=xz,fz=xyf_x=yz,f_y=xz,f_z=xy,故

    fAB(A)=fx(A)cosα+fy(A)cosβ+fz(A)cosγ=2×413+10×313+5×1213=9813. \begin{aligned} f_{\overrightarrow{AB}}(A)&=f_x(A)\cos\alpha+f_y(A)\cos\beta +f_z(A)\cos\gamma\\ &=2\times\frac{4}{13}+10\times\frac{3}{13}+5\times\frac{12}{13}=\frac{98}{13}. \end{aligned}

  7. u=f(xy,yz)u=f(\frac{x}{y},\frac{y}{z}),求ux,uy,uz\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z}

    xy=p,yz=q\frac{x}{y}=p,\frac{y}{z}=q,则

    ux=uppx+uqqx=1yf1, \begin{aligned} \frac{\partial u}{\partial x}&=\frac{\partial u}{\partial p}\frac{\partial p}{\partial x}+\frac{\partial u}{\partial q}\frac{\partial q}{\partial x}\\ &=\frac{1}{y}f_1, \end{aligned}

    uy=uppy+uqqy=xy2f1+1zf2, \begin{aligned} \frac{\partial u}{\partial y}&=\frac{\partial u}{\partial p}\frac{\partial p}{\partial y}+\frac{\partial u}{\partial q}\frac{\partial q}{\partial y}\\ &=-\frac{x}{y^2}f_1+\frac{1}{z}f_2, \end{aligned}

    uz=uppz+uqqz=yz2f2. \begin{aligned} \frac{\partial u}{\partial z}&=\frac{\partial u}{\partial p}\frac{\partial p}{\partial z}+\frac{\partial u}{\partial q}\frac{\partial q}{\partial z}\\ &=-\frac{y}{z^2}f_2. \end{aligned}

  8. 已知函数u=(xyz)ex+y+zu=(xyz)e^{x+y+z},求p+q+ruxpyqzr\frac{\partial^{p+q+r}u}{\partial x^p\partial y^q\partial z^r}.

    注意到

    ux=(xyz+yz)ex+y+z \frac{\partial u}{\partial x}=(xyz+yz)e^{x+y+z}

    所以

    puxp=(xyz+pyz)ex+y+z \frac{\partial^p u}{\partial x^p}=(xyz+pyz)e^{x+y+z}

    同理可得

    p+quxpyq=(xyz+pyz+qxz+pqz)ex+y+z, \frac{\partial^{p+q} u}{\partial x^p\partial y^q}=(xyz+pyz+qxz+pqz)e^{x+y+z},

    p+q+ruxpyqzr=(xyz+pyz+qxz+pqz+rxy+rpy+rqx+pqr)ex+y+z. \frac{\partial^{p+q+r}u}{\partial x^p\partial y^q\partial z^r}=(xyz+pyz+qxz+pqz+rxy+rpy+rqx+pqr)e^{x+y+z}.

  9. 证明:

    (1)grad(uv)=ugradv+vgradu;(2)gradf(u)=f(u)gradu.\begin{aligned} &(1)\hspace{1em} \operatorname*{grad}(uv)=u\operatorname*{grad}v+v\operatorname*{grad}u;\\ &(2)\hspace{1em}\operatorname*{grad}f(u)=f'(u)\operatorname*{grad}u. \end{aligned}

    不失一般性,不妨设u=u(x,y,z),v=v(x,y,z)u=u(x,y,z),v=v(x,y,z),则

    grad(uv)=(uvx+vux,uvy+vuy,uvz+vuz)=u(vx,vy,vz)+v(ux,uy,uz)=ugradv+vgradu; \begin{aligned} \operatorname*{grad}(uv)&=(uv_x+vu_x,uv_y+vu_y,uv_z+vu_z)\\ &=u(v_x,v_y,v_z)+v(u_x,u_y,u_z)\\ &=u\operatorname*{grad}v+v\operatorname*{grad}u; \end{aligned}

    此式推论:grad1u=1u2gradu\operatorname*{grad}\frac{1}{u}=-\frac{1}{u^2}\operatorname*{grad}u.

    gradf(u)=(f(u)ux,f(u)uy,f(u)uz)=f(u)(ux,uy,uz)=f(u)gradu; \begin{aligned} \operatorname*{grad}f(u)&=(f'(u)u_x,f'(u)u_y,f'(u)u_z)\\ &=f'(u)(u_x,u_y,u_z)\\ &=f'(u)\operatorname*{grad}u; \end{aligned}

  10. 已知z=f(x+y,xy,xy)z=f(x+y,xy,\frac{x}{y}),求zx,zxx,zxyz_x,z_{xx},z_{xy}.

    zx=f1+yf2+1yf3, z_x=f'_1+yf'_2+\frac{1}{y}f'_3,

    zxx=f11+yf12+1yf13+y(f21+yf22+1yf23)+1y(f31+yf32+1yf33)=f11+2yf12+2yf13+y2f22+2f23+1y2f33 \begin{aligned} z_{xx}&=f''_{11}+yf''_{12}+\frac{1}{y}f''_{13}+y(f''_{21}+yf''_{22}+\frac{1}{y}f''_{23})+\frac{1}{y}(f''_{31}+yf''_{32}+\frac{1}{y}f''_{33})\\ &=f''_{11}+2yf''_{12}+\frac{2}{y}f''_{13}+y^2f''_{22}+2f''_{23}+\frac{1}{y^2}f''_{33} \end{aligned}

    同理可得

    zxy=f11+(x+y)f12+1y(1xy)f13+xyf22xy3f33+f21y2f3 z_{xy}=f''_{11}+(x+y)f''_{12}+\frac{1}{y}(1-\frac{x}{y})f''_{13}+xyf''_{22}-\frac{x}{y^3}f''_{33}+f'_2-\frac{1}{y^2}f'_{3}

  11. 隐函数定理及其应用:

  12. 求由下列方程所确定的隐函数的导数:

    lnx2+y2=arctanyx,dydx.\ln\sqrt{x^2+y^2}=\arctan\frac{y}{x},\text{求}\frac{dy}{dx}.

    两边对xx求偏导得

    x+ydydxx2+y2=11+(yx)2(yx2+1xdydx) \frac{x+y\frac{dy}{dx}}{x^2+y^2}=\frac{1}{1+(\frac{y}{x})^2}\left(-\frac{y}{x^2}+\frac{1}{x}\frac{dy}{dx}\right)

    解得

    dydx=x+yxy \frac{dy}{dx}=\frac{x+y}{x-y}

  13. 已知u=u(x,y),v=v(x,y)u=u(x,y),v=v(x,y)满足下列方程组:

    {u=f(ux,v+y)v=g(ux,v2y)\left\{ \begin{aligned} u=f(ux,v+y)\\ v=g(u-x,v^2y) \end{aligned} \right.

    ux,vx\frac{\partial u}{\partial x},\frac{\partial v}{\partial x}.

    第一个方程两边对xx求偏导得:

    ux=(u+xux)f1+vxf2 \frac{\partial u}{\partial x}=\left(u+x\frac{\partial u}{\partial x}\right)f_1+\frac{\partial v}{\partial x}f_2

    第二个方程两边对xx求偏导得:

    vx=(ux1)g1+(2yvvx)g2 \frac{\partial v}{\partial x}=\left(\frac{\partial u}{\partial x}-1\right)g_1+\left(2yv\frac{\partial v}{\partial x}\right)g_2

    整理两个方程得

    (1f1x)uxf2vx=f1ug1ux+(12yvg2)vx=g1 \begin{aligned} (1-f_1x)u_x-f_2v_x=f_1u\\ -g_1u_x+(1-2yvg_2)v_x=-g_1 \end{aligned}

    解得

    ux=f1u(12yvg2)f2g1(1f1x)(12yvg2)f2g1vx=f1ug1g1(1f1x)(1f1x)(12yvg2)f2g1 \begin{aligned} u_x=\frac{f_1u(1- 2yvg_2)- f_2g_1}{(1-f_1x)(1-2yvg_2) - f_2g_1}\\ v_x=\frac{f_1ug_1- g_1(1-f_1x)}{(1-f_1x)(1-2yvg_2) - f_2g_1}\\ \end{aligned}

    算起来确实比较烦

  14. 求下列函数组所确定的反函数组的偏导数:

    {x=u+vy=u2+v2z=u3+v3\left\{\begin{aligned} &x=u+v\\ &y=u^2+v^2\\ &z=u^3+v^3 \end{aligned} \right.

    zx=z_x=3uv-3uv

    法1:
    三个方程两边分别对xx求偏导,得:

    {1=ux+vx0=2uxu+2vxvzx=3uxu2+3vxv2 \left\{\begin{aligned} &1=u_x+v_x\\ &0=2u_xu+2v_xv\\ &z_x=3u_xu^2+3v_xv^2 \end{aligned} \right.

    解得

    vx=uuv,ux=vuv,zx=3u2v+3v2uuv=3uv. v_x=\frac{u}{u-v},u_x=-\frac{v}{u-v},z_x=\frac{-3u^2v+3v^2u}{u-v}=-3uv.

    法2:严格来说上面的方法属于“投机取巧”,并未完全使用反函数组的性质
    由二对二的隐函数组定理,我们可以推导三对二的隐函数组定理:由

    dx=uxdu+vxdvdy=uydu+vydvdz=uzdu+vzdv \begin{aligned} dx=u_xdu+v_xdv\\ dy=u_ydu+v_ydv\\ dz=u_zdu+v_zdv \end{aligned}

    为求zxz_x,固定yy不变,则dy=0dy=0,解前两个方程得

    du=yv(x,y)(u,v)dx,dv=yu(x,y)(u,v)dx du=\frac{y_v}{\frac{\partial(x,y)}{\partial(u,v)}}dx,dv=-\frac{y_u}{\frac{\partial(x,y)}{\partial(u,v)}}dx

    于是

    dz=uzdu+vzdv=zuyvzvyu(x,y)(u,v)dx=(z,y)(u,v)(x,y)(u,v)dx dz=u_zdu+v_zdv=\frac{z_uy_v-z_vy_u}{\frac{\partial(x,y)}{\partial(u,v)}}dx=\frac{\frac{\partial(z,y)}{\partial(u,v)}}{\frac{\partial(x,y)}{\partial(u,v)}}dx

    zx=(z,y)(u,v)(x,y)(u,v)z_x=\frac{\frac{\partial(z,y)}{\partial(u,v)}}{\frac{\partial(x,y)}{\partial(u,v)}}.又因为

    (x,y)(u,v)=112u2v=2(vu),(z,y)(u,v)=3u23v22u2v=6uv(uv) \frac{\partial(x,y)}{\partial(u,v)}=\left|\begin{matrix} 1&1\\ 2u&2v \end{matrix} \right|=2(v-u), \frac{\partial(z,y)}{\partial(u,v)}=\left|\begin{matrix} 3u^2&3v^2\\ 2u&2v \end{matrix} \right|=6uv(u-v)

    所以zx=6uv(uv)2(vu)=3uv.z_x=\frac{6uv(u-v)}{2(v-u)}=-3uv.

  15. 已知空间中的一个平面

    {x=acosψcosφy=bcosψsinφz=sinψ\left\{\begin{aligned} x=a\cos\psi\cos\varphi\\ y=b\cos\psi\sin\varphi\\ z=\sin\psi \end{aligned} \right.

    求其过点(φ0,ψ0)(\varphi_0,\psi_0)的切平面与法线方程。

    由法向量公式:

    n=±((y,z)(ψ,φ),(z,x)(ψ,φ),(x,y)(ψ,φ))=±(bcos2ψcosφ,acos2ψsinφ,absinψsinφ) \begin{aligned} \mathbf{n}&=\pm\left(\frac{\partial(y,z)}{\partial(\psi,\varphi)},\frac{\partial(z,x)}{\partial(\psi,\varphi)},\frac{\partial(x,y)}{\partial(\psi,\varphi)}\right)\\ &=\pm(−b\cos^2\psi\cos\varphi,-a\cos^2\psi\sin\varphi,-ab\sin\psi\sin\varphi) \end{aligned}

    n(φ0,ψ0)=(bcos2ψ0cosφ0,acos2ψ0sinφ0,absinψ0sinφ0)\mathrm{n}(\varphi_0,\psi_0)=(b\cos^2\psi_0\cos\varphi_0,a\cos^2\psi_0\sin\varphi_0,ab\sin\psi_0\sin\varphi_0)
    切平面:

    bcos2ψ0cosφ0(xx0)+acos2ψ0sinφ0(yy0)+absinψ0sinφ0(zz0)=0 b\cos^2\psi_0\cos\varphi_0(x-x_0)+a\cos^2\psi_0\sin\varphi_0(y-y_0)+ab\sin\psi_0\sin\varphi_0(z-z_0)=0

    法线:

    xx0bcos2ψ0cosφ0=yy0acos2ψ0sinφ0=zz0absinψ0sinφ0(zz0) \frac{x-x_0}{b\cos^2\psi_0\cos\varphi_0}=\frac{y-y_0}{a\cos^2\psi_0\sin\varphi_0}=\frac{z-z_0}{ab\sin\psi_0\sin\varphi_0(z-z_0)}

  16. 求函数f(x,y,z)=4x2+y2+5z2f(x,y,z)=4x^2+y^2+5z^2在平面2x+3y+5z=122x+3y+5z=12上的最小值点。

    g(x,y,z)=2x+3y+5z12=0g(x,y,z)=2x+3y+5z-12=0,构造拉格朗日函数

    L(x,y,z,λ)=4x2+y2+5z2+λ(2x+3y+5z12)=0 \mathcal{L}(x,y,z,\lambda)=4x^2+y^2+5z^2+\lambda(2x+3y+5z-12)=0

    求偏导,构造方程组:

    {Lx=8x+2λ=0Ly=2y+3λ=0Lz=10z+5λ=02x+3y+5z12=0 \left\{\begin{aligned} &\mathcal{L}_x=8x+2\lambda=0\\ &\mathcal{L}_y=2y+3\lambda=0\\ &\mathcal{L}_z=10z+5\lambda=0\\ &2x+3y+5z-12=0 \end{aligned} \right.

    解得

    {x=λ4=25y=3λ2=125z=λ2=45λ=85 \left\{\begin{aligned} &x=-\frac{\lambda}{4}=\frac{2}{5}\\ &y=-\frac{3\lambda}{2}=\frac{12}{5}\\ &z=-\frac{\lambda}{2}=\frac{4}{5}\\ &\lambda=-\frac{8}{5} \end{aligned} \right.

    得到稳定点(25,125,45)(\frac{2}{5},\frac{12}{5},\frac{4}{5}),又因为Hessian矩阵diag(8,2,10)\mathrm{diag}(8,2,10)为正定矩阵,所以也为最小值点。

  17. 含参量积分:

  18. F(x,y)=xyxy(xyz)f(z)dzF(x,y)=\int_{\frac{x}{y}}^{xy}(x-yz)f(z)dz,其中f(z)f(z)为可微函数,求Fxy(x,y)F_{xy}(x,y)

  19. 运用对参量的微分法,求下列积分:

    0π2ln(a2sin2x+b2cos2x)dx(a2+b20)\int_{0}^{\frac{\pi}{2}}\ln(a^2\sin^2x+b^2\cos^2x)dx\hspace{1em}(a^2+b^2\neq 0)

    分情况讨论:
    a=0,b>0|a|=0,|b|>0时,原式=

    0π2ln(b2cos2x)dx=πlnb+20π2ln(cosx)dx=πlnbπln2=πlnb2, \begin{aligned} \int_{0}^{\frac{\pi}{2}}\ln(b^2\cos^2x)dx&=\pi\ln|b|+2\int_{0}^{\frac{\pi}{2}}\ln(\cos x)dx\\ &=\pi\ln|b|-\pi\ln2=\pi\ln\frac{|b|}{2}, \end{aligned}

    其中

    20π2ln(cosx)dx=0π2ln(cosx)dx+0π2ln(sinx)dx=0π2ln(sin2x)dxπ2ln2=120πln(sint)dtπ2ln2=0π2ln(sinx)dxπ2ln20π2ln(cosx)dx=π2ln2 \begin{aligned} &2\int_{0}^{\frac{\pi}{2}}\ln(\cos x)dx\\ &=\int_{0}^{\frac{\pi}{2}}\ln(\cos x)dx+\int_{0}^{\frac{\pi}{2}}\ln(\sin x)dx\\ &=\int_{0}^{\frac{\pi}{2}}\ln(\sin 2x)dx-\frac{\pi}{2}\ln2\\ &=\frac{1}{2}\int_{0}^{\pi}\ln(\sin t)dt-\frac{\pi}{2}\ln2\\ &=\int_{0}^{\frac{\pi}{2}}\ln(\sin x)dx-\frac{\pi}{2}\ln2\\ &\Longrightarrow \int_{0}^{\frac{\pi}{2}}\ln(\cos x)dx=-\frac{\pi}{2}\ln2 \end{aligned}

    同理可得a>0,b=0|a|>0,|b|=0时,原式=πlna2\pi\ln\frac{|a|}{2}
    a0,b0|a|\neq 0,|b|\neq 0时,设

    I(b)=0π2ln(a2sin2x+b2cos2x)dx I(b)=\int_0^{\frac{\pi}{2}}\ln(a^2\sin^2x+b^2\cos^2x)dx

    则对bb求导,

    I(b)=0π22bcos2xa2sin2x+b2cos2xdx=2b0π21(ab)2tan2x+1dx=2bπ2(1+ab)=πa+b \begin{aligned} I'(b)&=\int_0^{\frac{\pi}{2}}\frac{2b\cos^2x}{a^2\sin^2x+b^2\cos^2x}dx\\ &=\frac{2}{b}\int_0^{\frac{\pi}{2}}\frac{1}{(\frac{a}{b})^2\tan^2x+1}dx=\frac{2}{b}\cdot\frac{\pi}{2(1+|\frac{a}{b}|)}\\ &=\frac{\pi}{|a|+|b|} \end{aligned}

    又因为

    I(0)=0π2ln(a2sin2x)dx=πlna2, I(0)=\int_{0}^{\frac{\pi}{2}}\ln(a^2\sin^2x)dx=\pi\ln\frac{|a|}{2},

    所以

    I(b)=I(0)+0bπa+tdt=πlna+b2 I(b)=I(0)+\int_0^b\frac{\pi}{|a|+t}dt=\pi\ln\frac{|a|+|b|}{2}

    综上,原式值为πlna+b2\pi\ln\frac{|a|+|b|}{2}.

  20. 计算

    J=0epxsinbxsinaxxdx(p>0,b>a).J=\int_0^\infty e^{-px}\frac{\sin bx-\sin ax}{x}dx\hspace{1em}(p>0,b>a).

    (源自教材19.2 例5)

    因为

    sinbxsinaxx=abcosxydy \frac{\sin bx-\sin ax}{x}=\int_a^b\cos xydy

    所以

    J=0epxdxabcosxydy=0dxabepxcosxydy J=\int_0^\infty e^{-px}dx\int_a^b\cos xydy=\int_0^\infty dx\int_a^be^{-px}\cos xydy

    又因为epxcosxy<epx|e^{-px}\cos xy|<e^{-px}0epxdx\int_0^\infty e^{-px}dx收敛,故由M判别法,abepxcosxydx\int_a^be^{-px}\cos xydx[a,b][a,b]上一致收敛。又因为epxcosxye^{-px}\cos xy[0,+)×[a,b][0,+\infty)\times[a,b]上连续,故可交换积分顺序,故

    J=abdy0epxcosxydx=abpp2+y2dy=arctanbpap J=\int_a^bdy\int_0^\infty e^{-px}\cos xydx=\int_a^b\frac{p}{p^2+y^2}dy=\arctan\frac{b}{p}-\frac{a}{p}

    特别地,当p=1,a=0p=1,a=0时,0etsinxttdt=arctanx\int_0^\infty e^{-t}\frac{\sin xt}{t}dt=\arctan x.

  21. 证明下列函数关于α\alpha在集合1<α<1-1<\alpha<1上内闭一致收敛:

    0cosx2xαdx\int_{0}^{\infty}\frac{\cos{x^2}}{x^\alpha}dx

    x2=tx^2=t,则dx=12tdtdx=\frac{1}{2\sqrt{t}}dt,故

    0cosx2xαdx=120costtα+12dt=β=α+12120tβcostdt=12(01tβcostdt+1tβcostdt)J1(β)+J2(β) \begin{aligned} \int_{0}^{\infty}\frac{\cos{x^2}}{x^\alpha}dx&=\frac{1}{2}\int_{0}^{\infty}\frac{\cos t}{t^\frac{\alpha+1}{2}}dt\\ &\xlongequal{\beta=\frac{\alpha+1}{2}}\frac{1}{2}\int_{0}^{\infty}t^{-\beta}\cos tdt\\ &=\frac{1}{2}\left(\int_{0}^{1}t^{-\beta}\cos tdt+\int_{1}^{\infty}t^{-\beta}\cos tdt\right)\\ &\triangleq J_1(\beta)+J_2(\beta) \end{aligned}

    其中β(0,1)\beta\in (0,1)
    对于J1(β)J_1(\beta),因为0<β1<β2<1\forall 0<\beta_1<\beta_2<1

    J1(β)=01tβcostdt01tβ2costdt01tβ2dt \begin{aligned} J_1(\beta)&=\int_{0}^{1}t^{-\beta}\cos tdt\\ &\leq \int_{0}^{1}t^{-\beta_2}\cos tdt &\leq \int_{0}^{1}t^{-\beta_2}dt \end{aligned}

    0<β2<10<\beta_2<1,故01tβ2dt\int_{0}^{1}t^{-\beta_2}dt收敛,由M判别法得J1(β)J_1(\beta)[β1,β2][\beta_1,\beta_2]上一致收敛;
    对于J2(β)=1tβcostdtJ_2(\beta)=\int_{1}^{\infty}t^{-\beta}\cos tdt,因为

    1costdt \int_{1}^{\infty}\cos tdt

    关于β\beta一致有界,而tβt^{-\beta}[1,][1,\infty]单调且关于β\beta一致趋于00,故由狄利克雷判别法,J2(β)J_2(\beta)[β1,β2][\beta_1,\beta_2]上一致收敛。
    综上,J1(β)+J2(β)J_1(\beta)+J_2(\beta)β(0,1)\beta\in(0,1)上内闭一致收敛,即原积分在1<α<1-1<\alpha<1上内闭一致收敛。

  22. 曲线积分:

  23. 若曲线以极坐标ρ=ρ(θ)(θ1θθ2)\rho=\rho(\theta)(\theta_1\leq\theta\leq\theta_2)表示,试给出计算Lf(x,y)ds\int_L f(x,y)ds的公式,并用此公式计算下列曲线积分:

    Lxds,其中L为对数螺线ρ=aekθ(k>0)在圆r=a内的部分.\int_L xds,\text{其中}L\text{为对数螺线}\rho=ae^{k\theta}(k>0)\text{在圆}r=a\text{内的部分}.

    公式推导:由极坐标方程得x=ρ(θ)cosθ,y=ρ(θ)sinθx=\rho(\theta)\cos\theta,y=\rho(\theta)\sin\theta,故

    ds=(dxdθ)2+(dydθ)2=(ρ(θ)sinθ+ρ(θ)cosθ)2+(ρ(θ)cosθ+ρ(θ)sinθ)2=ρ2(θ)+(ρ(θ))2 \begin{aligned} ds&=\sqrt{\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2}\\ &=\sqrt{(-\rho(\theta)\sin\theta+\rho'(\theta)\cos\theta)^2+(\rho(\theta)\cos\theta+\rho'(\theta)\sin\theta)^2}\\ &=\sqrt{\rho^2(\theta)+(\rho'(\theta))^2} \end{aligned}

    所以

    Lf(x,y)ds=θ1θ2f(ρ(θ)cosθ,ρ(θ)sinθ)ρ2(θ)+(ρ(θ))2 \int_L f(x,y)ds=\int_{\theta_1}^{\theta_2}f(\rho(\theta)\cos\theta,\rho(\theta)\sin\theta)\sqrt{\rho^2(\theta)+(\rho'(\theta))^2}

    计算:

    Lxds=0aekθcosθ(aekθ)2+(akekθ)2dθ=a21+k20e2kθcosθdθ=a21+k2e2kθsinθ+2kcosθ4k2+10=2ka21+k24k2+1 \begin{aligned} \int_L xds&=\int_{-\infty}^0 ae^{k\theta}\cos\theta\sqrt{(ae^{k\theta})^2+(ake^{k\theta})^2}d\theta\\ &=a^2\sqrt{1+k^2}\int_{\infty}^0 e^{2k\theta}\cos\theta d\theta\\ &=a^2\sqrt{1+k^2}\cdot e^{2k\theta}\left.\frac{\sin\theta+2k\cos\theta}{4k^2+1}\right|_{\infty}^0\\ &=\frac{2ka^2\sqrt{1+k^2}}{4k^2+1} \end{aligned}

  24. 计算下述曲线积分: π4a3-\frac{\pi}{4}a^3

    Ly2dx+z2dy+x2dz\int_L y^2dx+z^2dy+x^2dz

    LL是维维安尼曲线x2+y2+z2=a2,x2+y2=ax(z0,a>0)x^2+y^2+z^2=a^2,x^2+y^2=ax(z\geq 0,a>0);若从xx轴正向看去,LL是逆时针方向进行的。

    x=asin2t,y=asintcost,z=acostx=a\sin^2t,y=a\sin t\cos t,z=a\cos t,其中t:π2π2t:\frac{\pi}{2}\to-\frac{\pi}{2} (关键一步)
    于是

    Ly2dx+z2dy+x2dz=π2π2a2sin2tcos2t2acostsint+a2cos2tacos2ta2sin4tasintdt=a3π2π2(2sin3tcos3t+cos4tcos2tsin2tsin5t)dt=2a30π2(cos4tcos2tsin2t)dt=π4a3 \begin{aligned} &\int_L y^2dx+z^2dy+x^2dz\\ =&\int_{\frac{\pi}{2}}^{-\frac{\pi}{2}}a^2\sin^2t\cos^2t\cdot 2a\cos t\sin t+a^2\cos^2 t\cdot a\cos 2t-a^2\sin^4 t\cdot a\sin tdt\\ =&a^3\int_{\frac{\pi}{2}}^{-\frac{\pi}{2}}(2\sin^3t\cos^3t+\cos^4 t-\cos^2 t\sin^2 t-\sin^5 t)dt\\ =&-2a^3\int_0^{-\frac{\pi}{2}}(\cos^4 t-\cos^2 t\sin^2 t)dt\\ =&-\frac{\pi}{4}a^3 \end{aligned}

  25. 多重积分:

  26. 设平面区域DDxx轴和yy轴的投影长度分别为和lxl_xlyl_yDD的面积为SDS_D(α,β)(\alpha,\beta)DD内任一点,证明:
    (1)

    D(xα)(yβ)dσlxlySD\left|\iint_D (x-\alpha)(y-\beta)d\sigma\right|\leq l_xl_yS_D

    证明:设D在xx轴与yy轴投影分别为[a,b][a,b][c,d][c,d],则lx=ba,ly=dcl_x=b-a,l_y=d-c,所以

    D(xα)(yβ)dσDxαyβdσlxlySD. \left|\iint_D (x-\alpha)(y-\beta)d\sigma\right|\leq\iint_D |x-\alpha||y-\beta|d\sigma\leq l_xl_yS_D.

    (2)

    D(xα)(yβ)dσlx2ly24\left|\iint_D (x-\alpha)(y-\beta)d\sigma\right|\leq\frac{l_x^2l_y^2}{4}

    证明:因为

    D(xα)(yβ)dσabxαdxcdyβdy, \left|\iint_D (x-\alpha)(y-\beta)d\sigma\right|\leq\int_a^b|x-\alpha|dx\cdot\int_c^d|y-\beta|dy,

    对于abxαdx\int_a^b|x-\alpha|dx,因为

    abxαdx=aα(xα)dx+αb(αx)dx=12x2αxaα12x2αxαb=(αa)2+(bα)22=u=αau2+(bau)22lx22 \begin{aligned} \int_a^b|x-\alpha|dx&=\int_a^\alpha(x-\alpha)dx+\int_\alpha^b(\alpha-x)dx\\ &=\left.\frac{1}{2}x^2-\alpha x\right|_a^\alpha-\left.\frac{1}{2}x^2-\alpha x\right| _\alpha^b\\ &=\frac{(\alpha-a)^2+(b-\alpha)^2}{2}\\ &\xlongequal{u=\alpha-a}\frac{u^2+(b-a-u)^2}{2}\\ &\leq \frac{l_x^2}{2} \end{aligned}

    同理有abyβdyly22\int_a^b|y-\beta|dy\leq\frac{l_y^2}{2},故得证。

  27. 运用格林公式计算双纽线(x2+y2)2=a2(x2y2)(x^2+y^2)^2=a^2(x^2-y^2)所围的平面面积。

    先转化为极坐标:设x=rcosθ,y=rsinθx=r\cos\theta,y=r\sin\theta,则
    r4=a2r2(cos2θsin2θ)r2=a2cos2θr^4=a^2r^2(\cos^2\theta-\sin^2\theta)\Longrightarrow r^2=a^2\cos2\theta(当π4θπ4-\frac{\pi}{4}\leq\theta\leq\frac{\pi}{4}时,对应右半片),故

    S=12xdyydx=π4π4[acos2θcosθ(acos2θcosθasin2θsinθcos2θ)]acos2θsinθ(acos2θsinθasin2θcosθcos2θ)]dθ=a2π4π4cos2θdθ=a2. \begin{aligned} S&=\frac{1}{2}\oint xdy-ydx\\ &=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left[a \sqrt{\cos2\theta}\cos\theta \left(a \sqrt{\cos2\theta}\cos\theta-\frac{a\sin2\theta\sin\theta}{\sqrt{\cos2\theta}}\right)\right] \\ &-a \sqrt{\cos2\theta}\sin\theta\Big(-a \sqrt{\cos2\theta}\sin\theta-\frac{a\sin2\theta\cos\theta}{\sqrt{\cos2\theta}}\Big)\Big]d\theta \\ &=a^{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\cos2\theta d\theta=a^{2}. \end{aligned}

    注:实际上也可以直接用极坐标面积公式:S=12r2dθS=\frac{1}{2}\oint r^2d\theta,简单证明如下:
    因为dx=cosθdrrsinθdθ,dy=sinθdr+rcosθdθdx=\cos\theta dr-r\sin\theta d\theta,dy=\sin\theta dr+r\cos\theta d\theta,所以

    xdyydx=(rcosθ)(sinθdr+rcosθdθ)(rsinθ)(cosθdrrsinθdθ)=(rsinθcosθdr+r2cos2θdθ)(rsinθcosθdrr2sin2θdθ)=r2(cos2θ+sin2θ)dθ=r2dθ \begin{aligned} xdy-ydx & =(r\cos\theta)(\sin\theta dr+r\cos\theta d\theta)-(r\sin\theta)(\cos\theta dr-r\sin\theta d\theta) \\ & =(r\sin\theta\cos\theta dr+r^2\cos^2\theta d\theta)-(r\sin\theta\cos\theta dr-r^2\sin^2\theta d\theta) \\ & =r^2(\cos^2\theta+\sin^2\theta)d\theta \\ & =r^2d\theta \end{aligned}

    那么此题就可以直接得到a2π4π4cos2θdθ=a2a^{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\cos2\theta d\theta=a^2.

  28. 曲面积分:

  29. 计算下列第一型曲面积分:

    S(x2+y2)dS\iint_S(x^2+y^2)dS

    其中SS为立体x2+y2z1\sqrt{x^2+y^2}\leq z\leq 1的边界曲面。

    SS分为S1:z=x2+y2S_1:z=\sqrt{x^2+y^2}S2:z=1,x2+y21S_2:z=1,x^2+y^2\leq 1,二者在xyxy平面上投影均为x2+y21x^2+y^2\leq 1,于是

    s(x2+y2)dS=S1(x2+y2)dS+S2(x2+y2)dS=2x2+y21(x2+y2)dxdy+x2+y21(x2+y2)dxdy=202πdθ01r3dr+02πdθ01r3dr=π2(2+1). \begin{aligned} \iint_{s}(x^{2}+y^{2}) dS & =\iint_{S_{1}}(x^{2}+y^{2}) dS+\iint_{S_{2}}(x^{2}+y^{2}) dS \\ & =\sqrt{2}\iint_{x^{2}+y^{2}\leqslant1}(x^{2}+y^{2})dxdy+\iint_{x^{2}+y^{2}\leqslant1}(x^{2}+y^{2})dxdy \\ & =\sqrt{2}\int_{0}^{2\pi}d\theta \int_{0}^{1}r^{3} dr+\int_{0}^{2\pi}d\theta \int_{0}^{1}r ^{3} dr \\ & =\frac\pi2(\sqrt{2}+1). \end{aligned}

    注意不要漏掉S2S_2

  30. 计算下列第二型曲面积分:

    Sx2dydz+y2dzdx+z2dxdy\iint_S x^2dydz+y^2dzdx+z^2dxdy

    其中SS是球面(xa)2+(yb)2+(zc)2=R2(x-a)^2+(y-b)^2+(z-c)^2=R^2并取外侧为正向。

    由轮换对称性,只需计算Sz2dxdy\iint_S z^2dxdy.
    zc=±R2(xa)2(yb)2z-c=\pm\sqrt{R^{2}-(x-a)^{2}-(y-b)^{2}},利用极坐标变换可得

    Sx2dxdy=Dxy,(xa)2+(yb)2R2(c+R2(xa)2(yb)2)dxdyDxy(cR2(xa)2(yb)2)dxdy=4c02πdφ0RR2r2dr=83πR3c, \begin{aligned} & \iint_{S}x^{2}\mathrm{d}x\mathrm{d}y=\iint_{D_{xy},(x-a)^{2}+(y-b)^{2}\leqslant R^{2}}(c+\sqrt{R^{2}-(x-a)^{2}-(y-b)^{2}})\mathrm{d}x\mathrm{d}y \\ & -\iint_{D_{xy}}(c-\sqrt{R^{2}-(x-a)^{2}-(y-b)^{2}})\mathrm{d}x\mathrm{d}y \\ & =4c\int_{0}^{2\pi}\mathrm{d}\varphi\int_{0}^{R}\sqrt{R^{2}-r^{2}}\mathrm{d}r=\frac{8}{3}\pi R^{3}c, \end{aligned}

    故原式=83πR3(a+b+c)\frac{8}{3}\pi R^{3}(a+b+c).